Search results for "Fractional operator"

showing 7 items of 7 documents

Earthquake ground motion artificial simulations through Fractional Tajimi-Kanai Model

2013

Fractional operators Ground motion Tajimi-Kanai filter
researchProduct

A Non-stationary Fractional Tajimi Kanai Model of Earthquake Ground Motions

2013

Ground motionTajimi-Kanai filterFractional operator
researchProduct

Fractional model of concrete hereditary viscoelastic behaviour

2016

The evaluation of creep effects in concrete structures is addressed in the literature using different predictive models, supplied by specific codes, and applying the concepts of linear viscoelastic theory with ageing. The expressions used in the literature are mainly based on exponential laws, which are introduced in the integral expression of the Boltzmann principle; this approach leads to the need of finding approximated numerical solutions of the viscoelastic response. In this study, the hereditary fractional viscoelastic model is applied to concrete elements, underlining the convenience of using creep or relaxation functions expressed by power laws. The full reciprocal character of cree…

RelaxationDiscretizationLaplace transformMechanical EngineeringMathematical analysis02 engineering and technologyConvolution integralsCreep021001 nanoscience & nanotechnologyPower lawViscoelasticityExponential functionMatrix (mathematics)Linear viscoelasticity020303 mechanical engineering & transports0203 mechanical engineeringCreepFractional operatorsRelaxation (approximation)0210 nano-technologyMathematicsConcrete
researchProduct

Normalized Solutions to the Fractional Schrödinger Equation with Potential

2023

AbstractThis paper is concerned with the existence of normalized solutions to a class of Schrödinger equations driven by a fractional operator with a parametric potential term. We obtain minimization of energy functional associated with that equations assuming basic conditions for the potential. Our work offers a partial extension of previous results to the non-local case.

potential functionSettore MAT/05 - Analisi MatematicaGeneral MathematicsSchrödinger equationfractional operatornormalized solution
researchProduct

Step-by-step integration for fractional operators

2018

Abstract In this paper, an approach based on the definition of the Riemann–Liouville fractional operators is proposed in order to provide a different discretisation technique as alternative to the Grunwald–Letnikov operators. The proposed Riemann–Liouville discretisation consists of performing step-by-step integration based upon the discretisation of the function f(t). It has been shown that, as f(t) is discretised as stepwise or piecewise function, the Riemann–Liouville fractional integral and derivative are governing by operators very similar to the Grunwald–Letnikov operators. In order to show the accuracy and capabilities of the proposed Riemann–Liouville discretisation technique and th…

Numerical AnalysisDiscretizationApplied Mathematics02 engineering and technologyFunction (mathematics)DerivativeWhite noise01 natural sciences010305 fluids & plasmasExponential functionFractional calculus020303 mechanical engineering & transports0203 mechanical engineeringModeling and SimulationStep function0103 physical sciencesPiecewiseApplied mathematicsFractional Calculus Riemman–Liouville Grünwald–Letnikov Discrete fractional operatorsMathematics
researchProduct

A fractional order theory of poroelasticity

2019

Abstract We introduce a time memory formalism in the flux-pressure constitutive relation, ruling the fluid diffusion phenomenon occurring in several classes of porous media. The resulting flux-pressure law is adopted into the Biot’s formulation of the poroelasticity problem. The time memory formalism, useful to capture non-Darcy behavior, is modeled by the Caputo’s fractional derivative. We show that the time-evolution of both the degree of settlement and the pressure field is strongly influenced by the order of Caputo’s fractional derivative. Also a numerical experiment aiming at simulating the confined compression test poroelasticity problem of a sand sample is performed. In such a case, …

Constitutive equationPoromechanics02 engineering and technology01 natural sciencesPressure fieldDarcy–Weisbach equationPhysics::Geophysics010305 fluids & plasmas0203 mechanical engineeringFractional operators0103 physical sciencesCaputo's fractional derivative; Fractional operators; PoroelasticityApplied mathematicsGeneral Materials ScienceCaputo's fractional derivative Fractional operators PoroelasticityCaputo's fractional derivativeCivil and Structural EngineeringMathematicsOrder theoryBiot numberMechanical EngineeringPoroelasticityCondensed Matter PhysicsFractional calculus020303 mechanical engineering & transportsMechanics of MaterialsFractional operatorSettore ICAR/08 - Scienza Delle CostruzioniPorous medium
researchProduct

Fractional-order theory of thermoelasticicty. I: Generalization of the Fourier equation

2018

The paper deals with the generalization of Fourier-type relations in the context of fractional-order calculus. The instantaneous temperature-flux equation of the Fourier-type diffusion is generalized, introducing a self-similar, fractal-type mass clustering at the micro scale. In this setting, the resulting conduction equation at the macro scale yields a Caputo's fractional derivative with order [0,1] of temperature gradient that generalizes the Fourier conduction equation. The order of the fractional-derivative has been related to the fractal assembly of the microstructure and some preliminary observations about the thermodynamical restrictions of the coefficients and the state functions r…

Uses of trigonometryGeneralization01 natural sciences010305 fluids & plasmasScreened Poisson equationsymbols.namesakeFractional operators0103 physical sciencesFractional Fourier equationMechanics of Material010306 general physicsFourier seriesMathematicsFourier transform on finite groupsEntropy functionsHill differential equationPartial differential equationMechanical EngineeringFourier inversion theoremMathematical analysisTemperature evolutionMechanics of MaterialssymbolsFractional operatorSettore ICAR/08 - Scienza Delle CostruzioniEntropy function
researchProduct